QUALITY ROOF DECKS FOR NEW CONSTRUCTION AND REROOFING APPLICATIONS

ELASTIZELL
COMPOSITE INSULATING ROOF DECK SYSTEMS

www.Elastizell.com
THE ELASTIZELL ADVANTAGE

Elastizell Composite Insulating Roof Decks are superior to rigid board systems. In the past, roofing systems utilized rigid board insulation because its low cost seemed to outweigh its many disadvantages. Now, economical Elastizell Roof Decks have many advantages over rigid board systems. Elastizell Roof Decks solve roofing problems! They have performed in the marketplace for over 30 years. When compared to insulation board systems, Elastizell Roof Decks are superior in every way!

Architects and Consultants have become increasingly aware of the many difficulties inherent with insulation board roof decks.

DIFFICULTIES INHERENT WITH INSULATION BOARD

<table>
<thead>
<tr>
<th></th>
<th>RIGID INSULATION BOARD</th>
<th>ELASTIZELL ROOF DECKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ReRoofability</td>
<td>Difficult since insulation must be removed, disposed, and replaced</td>
<td>Simply replace the membrane</td>
</tr>
<tr>
<td>Slope-to-Drain</td>
<td>Positive slope & drainage is difficult and often impossible</td>
<td>Cast slope-to-drain</td>
</tr>
<tr>
<td>Life Cost</td>
<td>High cost when materials, labor and maintenance costs are added</td>
<td>Low cost with minimum maintenance required</td>
</tr>
<tr>
<td>Moisture Absorbance and Transfer</td>
<td>Absorbs and transfers moisture during roofing failures - must replace insulation</td>
<td>No moisture absorbing components</td>
</tr>
<tr>
<td>Installation Over Metal Deck</td>
<td>Especially during inclement weather, water collecting under insulation is a serious problem</td>
<td>Flutes are filled with slurry preventing water collection.</td>
</tr>
<tr>
<td>Fasteners</td>
<td>• Board may creep if not fastened properly</td>
<td>Accepts fasteners</td>
</tr>
<tr>
<td></td>
<td>• Fastener corrosion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Not holding to thin metal sections</td>
<td></td>
</tr>
</tbody>
</table>
Customized Slope-to-Drain
The purpose of a roof system is to protect the interior of a building from the outside environment. Proper slope-to-drain eliminates ponding which is the cause of membrane aging leading to roof leaks. Tapered insulation is only effective on simple drainage patterns with few penetrations.

The Elastizell Composite Insulating Roof Deck System provides positive drainage in new construction and reroofing applications. The insulation system is cast with a positive slope to correct and adjust field differences which always occur between drawings and actual rooftop conditions.

Few roof decks have regular drainage patterns or built-in slopes for positive drainage. Elastizell achieves positive drainage by combining a stair-stepped, EPS insulation board with custom sloping of the Elastizell. Standard rigid board cannot do this and tapered board systems are costly and inefficient.

Integral System
The Elastizell Composite System encapsulates EPS board within the system. EPS board is bonded to the deck in new construction or to the existing roof membrane in reroofing applications. Elastizell bonds the EPS to the deck and completely fills depressions and deck flutes which are not filled with insulation board systems. Elastizell encapsulates EPS insulation for resistance to uplift, fire and seismic forces. Cast-in-place Elastizell sandwiches the EPS insulation board to the deck creating an integral system. Deck penetrations do not weaken the system and stress-causing joints directly under the roofing membrane are eliminated.

Re-Roofability
No roof system lasts forever. When a membrane fails over insulation board, the entire system must be torn off and replaced exposing the building’s interior. Rigid insulation board is damaged by water. An Elastizell Composite System is not damaged by water. Encapsulated EPS board is completely protected with an Elastizell Composite System - only the roofing membrane need be replaced.

Heat Sink
Elastizell and EPS board provide a heat sink beneath the roofing membrane moderating temperature changes which cause thermal shock twice daily - heat from the sun and cooling at nighttime or by rain.

Insulation board next to and under the roofing membrane cannot absorb this heat, resulting in greater thermal shock eventually causing fatigue and splits in the membrane.

Permanent Insulation
An Elastizell Roof Deck is permanent insulation which performs better than rigid insulation. Rigid insulation acts like a sponge, soaking up moisture and reducing its insulation value. Once a roof leaks over rigid board, the wet insulation must be replaced. This is not the case with Elastizell and encapsulated EPS insulation. With an Elastizell Roof Deck, only the membrane is replaced. Elastizell fills the flutes of metal deck systems so that air infiltration is eliminated. Elastizell Roof Decks have neither the joint problems nor the thermal drift characteristics associated with rigid board insulation.

Fasteners
Mechanically attached insulation board systems have extensive and confusing fastening requirements.

Low Cost
An Elastizell Composite System is less costly than rigid insulation board. EPS insulation is bonded to the substrate. Once the Elastizell Roof Deck is cast, installation of the membrane is continuous and fast.

Wind Uplift
Elastizell Roof Decks perform as an air retarder providing excellent wind uplift performance. Elastizell bonds the EPS board to the structural deck, filling depressions and deck flutes.

Elastizell Roof Decks have UL, FM and Miami-Dade County wind uplift ratings. See Page 7 for listings.

Fire Rated
Elastizell Roof Decks have many fire ratings. Elastizell is non-combustible and does not require fireproofing of the underside of the steel deck or the addition of a separate thermal barrier necessary with rigid board systems. Since the flutes are filled, this fire channel is eliminated.

Elastizell Roof Decks have numerous UL fire ratings. See Page 5 for listings.

Low Weight
System weights as low as 7 psf.
Elastizell is an excellent composite insulation system over precast and cast-in-place concrete. Since bottom-side venting provisions are difficult, perimeter venting should be considered at the flashing/counter flashing detail.

DESIGNED AND TESTED TO MEET THE HIGHEST INDUSTRY STANDARDS
For more than 40 years, the Elastizell Corporation of America has researched, developed, tested, improved and perfected the Elastizell Composite Insulating Roof Deck System.

ACCEPTED BY THE EXPERTS AND THE INDUSTRY
Elastizell systems have numerous wind uplift, fire and seismic ratings. Major roofing manufacturers accept Elastizell Composite Insulating Roof Deck Systems with their warranted membranes.

THE BASIC SYSTEMS
Elastizell Composite Insulation can be placed over precast or cast-in-place concrete, and galvanized steel decking. In both of these systems, the EPS insulation board increases R-values and reduces dead load. System weights as low as 7 psf.

EPS INSULATION BOARD
When combined with EPS, Elastizell Roof Decks have advantages over other roofing systems:
- A solid base for roofing membranes
- Reduced dead weight
- Slope-to-drain capability
- Fire, seismic and wind uplift ratings

ROOFING
Roofing may begin when the roof deck can withstand foot traffic which is from one to two days after the deck is cast. The Elastizell deck should not be left exposed for longer than five to seven days -- especially in dry climates. The presence of cracking is not detrimental to the roofing system.

THE ROOFING BASE SHEET
The roofing base sheet is attached with an approved base sheet fastener to the Elastizell Roof Deck in a pattern recommended by the roofing manufacturer. Fastener pullout values increase with the age of the roof deck. Typical nail withdrawal is 40 pounds.

PERIMETER VENTING
Perimeter venting at the flashing/counter flashing detail should be a part of the roof system although it is not necessary in low humidity regions. Special bottom-side venting provisions are not normally required unless local practice includes it.

FOR SINGLE-PLY ROOFING
For single-ply roofing consult the manufacturer for specific recommendations. Modified bitumens may be torched or mopped to a nailed base sheet.
Elastizell does not require the slotted steel decks demanded by wet aggregate concretes. Elastizell may be cast over either slotted or non-slotted steel decks according to local conditions. Specify Elastizell over G-60 or G-90 galvanized steel centering since painted steel deck is unsuitable for the direct application of any concrete.

ELASTIZELL UL FIRE-RATED SYSTEMS

- **Unprotected Steel Deck**
 - Built-up or single-ply roofing
 - Elastizell Composite Insulating Roof Deck System
 - EPS insulation board (optional)
 - Exposed steel deck
 - Sprayed beam or joist

- **Protected Steel Deck**
 - Built-up or single-ply roofing
 - Elastizell Composite Insulating Roof Deck System
 - EPS insulation board (optional)
 - Steel deck over bar joists
 - Suspended ceiling

- **Precast Concrete Deck**
 - Built-up or single-ply roofing
 - Elastizell Composite Insulating Roof Deck System
 - EPS insulation board (optional)
 - Precast single or double Tees

- **Structural Concrete & Protected Steel Deck**

- **Structural Concrete & Unprotected Steel Deck**

- **Hollow Core Concrete Deck** (PCA Studies)

UL Rated

- P902, P903, P907, P908, P919, P920, P921, P922, P923, P924, P925, P926, P927, P928, P929, P930
- P214, P241, P246, P255, P261, P264, P405, P406, P407, P410, P414, P416
- P501, P503, P509, P511, P513, P514, P520
- P905, P910, P913, P916
- P708, P737, P810, P812
- D708, D750, D755, D759, D768, D775, D832
- D902, D916, D919, D922, D923, D925, D927, D929

GALVANIZED STEEL DECK

SINGLE-PLY OR BUILT-UP ROOFING

EPS INSULATION BOARD (OPTIONAL)

ELASTIZELL INSULATING CONCRETE
PHYSICAL PROPERTIES

<table>
<thead>
<tr>
<th>Range</th>
<th>Range IA</th>
<th>Range IB</th>
<th>Range IIA</th>
<th>Range IIB</th>
<th>Range IIIA</th>
<th>Range IIIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Dry Density (pcf)</td>
<td>21-27</td>
<td>27-32</td>
<td>32-40</td>
<td>24-28</td>
<td>32-38</td>
<td>28-32</td>
</tr>
<tr>
<td>Oven Dry Density (pcf)</td>
<td>16-20</td>
<td>24-28</td>
<td>32-38</td>
<td>20-24</td>
<td>36-44</td>
<td>28-44</td>
</tr>
<tr>
<td>Cast Density (pcf)</td>
<td>256-320</td>
<td>384-448</td>
<td>513-641</td>
<td>320-384</td>
<td>448-513</td>
<td>609-705</td>
</tr>
<tr>
<td>28-Day Minimum Compressive Strength (psi)</td>
<td>40</td>
<td>160</td>
<td>250</td>
<td>80</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>R-value (per inch)</td>
<td>1.80</td>
<td>1.58</td>
<td>1.34</td>
<td>1.20</td>
<td>1.00</td>
<td>0.86</td>
</tr>
</tbody>
</table>

NOTE: Thermal conductivity is based on the minimum dry density measured at a mean temperature of 75°F per ASTM C518.

R-VALUES FOR VARIOUS MATERIALS*

<table>
<thead>
<tr>
<th>Material</th>
<th>R-value (°F·ft²·h/Blu in)</th>
<th>R-value (K·m/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2" plywood</td>
<td>0.62</td>
<td>0.01</td>
</tr>
<tr>
<td>3/4" plywood</td>
<td>0.93</td>
<td>0.015</td>
</tr>
<tr>
<td>1/2" gypsum board</td>
<td>0.45</td>
<td>0.007</td>
</tr>
<tr>
<td>5/8" gypsum board</td>
<td>0.56</td>
<td>0.009</td>
</tr>
<tr>
<td>1/2" acoustical tile</td>
<td>1.25</td>
<td>0.022</td>
</tr>
<tr>
<td>3/4" acoustical tile</td>
<td>1.89</td>
<td>0.034</td>
</tr>
<tr>
<td>2" polystyrene board</td>
<td>8.33</td>
<td>0.56</td>
</tr>
<tr>
<td>1-1/2" polystyrene board</td>
<td>6.25</td>
<td>0.38</td>
</tr>
<tr>
<td>1" polystyrene board</td>
<td>4.17</td>
<td>0.24</td>
</tr>
<tr>
<td>1" urethane - sprayed on, 3 pcf</td>
<td>7.14</td>
<td>0.44</td>
</tr>
<tr>
<td>1" fiberboard</td>
<td>2.78</td>
<td></td>
</tr>
<tr>
<td>3/4" plaster</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>1" poured perlited gypsum</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>1" perlite board</td>
<td>2.78</td>
<td></td>
</tr>
<tr>
<td>air space (heat flow up-winter)</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>air space-winter-reflective surface</td>
<td>1.90</td>
<td></td>
</tr>
<tr>
<td>air space (heat flow down-summer)</td>
<td>1.23</td>
<td></td>
</tr>
<tr>
<td>air space-summer-reflective surface</td>
<td>3.74</td>
<td></td>
</tr>
<tr>
<td>1" Foamglass insulation</td>
<td>2.63</td>
<td></td>
</tr>
<tr>
<td>15/16" Fiberglas® Roof insulation</td>
<td>3.70</td>
<td></td>
</tr>
<tr>
<td>1-5/16" Fiberglas® Roof insulation</td>
<td>5.26</td>
<td></td>
</tr>
</tbody>
</table>

*Convert R-Values (°F·ft²·h/Blu in) to Kelvin meter per watt (K·m/W) multiply by 6.929.

Sources: ASHRAE Handbook of Fundamentals and manufacturer’s values.

SEISMIC DATA

Elastizell and steel decking meet Seismic Zone 4 requirements. (Reference ICBO Report No. 3081)

These seismic shear values are based on:

1. Steel deck need not be web slotted.
2. Deck welding pattern of 3-3 in each corrugation.
3. When required, Keydeck Mesh Style 2160-2-1619.
5. EPS with six-3" diameter holes per 2' by 4' board.

Diaphragm Shear Values (lbs./lin. ft.)

<table>
<thead>
<tr>
<th>Base Metal Thickness and (Deck Gauge)</th>
<th>Allowable Diaphragm Shear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesh</td>
<td>No Mesh</td>
</tr>
<tr>
<td>.018" (26 ga)</td>
<td>570</td>
</tr>
<tr>
<td>.020" (26 ga)</td>
<td>630</td>
</tr>
<tr>
<td>.024" (24 ga)</td>
<td>750</td>
</tr>
<tr>
<td>.030" (22 ga)</td>
<td>930</td>
</tr>
<tr>
<td>.036" (20 ga)</td>
<td>1030</td>
</tr>
</tbody>
</table>

GUIDES and APPROVALS

Underwriters Laboratories:
- Wind Uplift Class 90 - Construction Nos. 155 & 480
- Fire Ratings - Multiple listings (see previous page)

Factory Mutual Approval Guide
- Non-combustible & Class I Roof Deck Construction
- ICBO Report Nos. 1381 and 3081

Federal Construction Guide Specification
- Section 03501 - May, 1975, Insulating Concrete Roof Decks
- Corps of Engineers Guide Specification
- CEGS-03501 - June, 1988

Southern Building Code Congress International
- Evaluation Report No. 9963
- California State Fire Marshall
- Listing 1060-510:2
- City and County of San Francisco
- General Approval 121 E2.4
- City of Los Angeles
- Research Report No. 23982
- Army Corps of Engineers
- September, 1970, CE 201 - Class F
- Miami-Dade County (Florida)
- Product Approval No: 00-0815.04
Ponded water on roof decks leads to membrane and insulation deterioration. Membrane leaks and wet insulation significantly reduce the thermal insulation values. Note: Two inches of ponded water adds 10 psf dead load.

Elastizell solves reroofing problems because of its many advantages. It’s superiority over insulation board is evidenced by the fact that Elastizell Roof Decks are an economical and permanent insulation solution for the building.

WIND UPLIFT

UL Ratings

- **Class 90 - Construction No. 155 - Fire Classified**
 - New Construction over Steel Deck with BUR or Modified Bitumen

- **Class 90 - Construction No. 480 - Fire Classified**
 - Reroofing applications over:
 - Existing Steel Deck & Lightweight Concrete
 - Existing Structural Concrete Deck
 - Temporary Membrane over both Existing Steel & Lightweight Concrete and Structural Concrete Deck

Miami-Dade County Ratings

<table>
<thead>
<tr>
<th>Substructure</th>
<th>Maximum Design Pressure (Uplift Pressure) / 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel Decking (New) (spans 5'-0" to 6'-3")</td>
<td>45 psf to 112.5 psf</td>
</tr>
<tr>
<td>Structural Concrete Deck (New)</td>
<td>205 psf to 240 psf</td>
</tr>
<tr>
<td>Structural Concrete Deck (Reroof with existing asphaltic BUR roofcover)</td>
<td>112 psf to 342 psf</td>
</tr>
</tbody>
</table>

FM Ratings

- **Class 9-120**
 - for mechanically attached base sheets with mopped BUR or one-ply Modified Bitumen either mopped or torched over Steel Decks, Concrete Decks & Recovered Concrete Decks
 - for fully adhered roofing membranes over Steel Decks, Concrete Decks & Recovered Concrete Decks
 - for fully adhered roofing membranes over Concrete Decks & Recovered Concrete Decks

- **Class 9-180 to 1-540**
 - Also for Concrete Deck Applications!

FM Pull Tests of Elastizell over Structural Concrete

<table>
<thead>
<tr>
<th>Pressure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>225+ psf</td>
<td>BUR cover with slurried EPS board and Elastizell topping</td>
</tr>
<tr>
<td>480+ psf</td>
<td>Slurried EPS board and Elastizell topping</td>
</tr>
<tr>
<td>480+ psf</td>
<td>Elastizell topping only</td>
</tr>
</tbody>
</table>

Note: Samples did not fail - Limits of testing equipment exceeded
Part One: General
1.1 Description of work: Provide an insulating concrete roof deck system as shown on the drawings and as needed for a complete and proper installation.
1.2 Applicator qualification: The Applicator shall be approved by the Manufacturer - Elastizell Corporation of America.
1.3 Certification: When required and upon completion a certificate from the Manufacturer and co-signed by the Applicator states that the materials and installation methods follow current practices.
1.4 Product data: Prior to starting the work of this Section, present installation procedures, and submittals, as required, for fire ratings and wind uplift data for this application.

Part Two: Products
2.1 Insulating concrete is a slurry of cement, water, and Elastizell to produce an insulating concrete of a specific density range. Concentrate shall comply with ASTM C869 when tested in accordance with ASTM C796.
2.2 Cement: Portland cement shall comply with ASTM C150, C595 or C1157.
2.3 Admixtures: Admixtures for water reducing and set acceleration may be used if approved by the Manufacturer.
2.4 Water: Use potable water.
2.5 Aggregate: For hybrid mixtures, the expanded aggregate shall comply with ASTM C332.
2.6 Physical properties shall meet the following criteria:
RANGE II: Cast density of 34-42pcf, minimum compressive strength of 160 psi, for a nailed base sheet roofing membrane.
RANGE III: Cast density of 42-50pcf, minimum compressive strength of 250 psi, for a fully adhered roofing membrane.
2.7 Insulation Board: When included, a minimum 1.0pcf EPS insulation board shall conform to ASTM C578, in thickness shown on the drawings as required (up to 12" thick). EPS board shall have a minimum 6-3" diameter bond holes for each 8 square feet of board. The board is placed in a bond coat and topped with a minimum 2" of Elastizell concrete. EPS board should be held back 3" from the perimeter of the roof deck and all rooftop units. The EPS board may be stair-stepped or of constant thickness.
2.8 Expansion joints are necessary when there are expansion joints in the structural system and per NRCA recommendations.
2.9 Reinforcement: Elastizell concrete may contain Zell-Crete Fibers (3/4" long) in minimum quantities of 1#/cubic yard in lieu of Keydeck mesh requirements.

Part Three: Execution
3.1 Inspection: Prior to starting work, any unsatisfactory conditions of related trades shall be corrected by others.
3.2 Installation: Install the insulating concrete roof deck system in accordance with current practices to insure proper drainage, the required insulation value, and the published fire and uplift ratings.
3.2.1 Preparation: General Contractor shall clear the deck of all standing water, dirt, debris, ice, etc. Prepare the roof grades prior to placing the insulating concrete roof deck system.
3.2.2 Mixing and placing: Insulating concrete is mixed in approved equipment and pumped into place. EPS bond coats, double casting, and two-density casting are acceptable methods of installation.
3.2.3 Finishing: Insulating concrete shall be screeded to the proper thickness and slope with a surface free of ridges and sharp projections prior to installation of the roofing membrane.
3.2.4 Weather: Insulating concrete roof decks may be placed when temperatures are 32°F and rising. If colder temperatures are anticipated, the Applicator shall take suitable precautions for the installation of an acceptable deck. The roofing membrane application must be coordinated with the insulating concrete installation to avoid prolonged exposure of the roof deck.
3.2.5 Testing: Check the cast density at the point of placement and adjust the mix to obtain the required cast density. A minimum 4 test specimens (3"x6" cylinders) shall be sampled at the point of placement daily or for each 100 cubic yards of material placed. Protect samples from damage and temperature extremes and test according to ASTM C796. Elastizell concrete samples shall not be oven-dried prior to compressive testing. Testing shall be conducted and reported by the Manufacturer.
3.3 Completion: Begin roofing when the insulating concrete roof deck can withstand construction traffic. This is usually 1 to 2 days after the deck has been placed. The roof deck should not be left exposed for longer than 5 to 7 days. The Applicator cannot be responsible for moisture (rain) entering the roof deck after the deck is cast and finished. The general contractor and roofing contractor are responsible for removing excess water (rain) in the system. Consult the roofing manufacturers for their recommended nailing pattern for attaching the base sheet to the insulating concrete roof deck system.